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Puff motions in unstratified surroundings 

By J .  M. RICHARDS 
Department of Electricd Engineering, Loughborough College of Technology 

(Received 24 March 1964 and in revised form 18 August 1964) 

The fluid motion associated with puffs (strongly turbulent masses of fluid moving 
through surroundings with which they mix readily) is considered, for cases in 
which any buoyancy force acts in the direction of gross motion, the surroundings 
are unstratified, the internal and external densities are approximately equal, and 
the motion of the surroundings is directly associated with the motion of the puff. 
It is assumed that the size of any one such puff is directly proportional to the 
distance travelled, i.e. that r = z / n .  

It is shown that d(pra ( d z / d ~ ) ~ / d ~  = Gail& g, where t is time, p is the density of the 
surrounding fluid, g is the gravitational acceleration, C, is a numerical constant, 
and a = 3 or 2 in the cases of axial or planar mean symmetry. M3 is the mass 
excess, and M2 is the mass excess per unit length. 

Previous experiments with buoyant puffs having zero initial momentum (i.e. 
experiments with thermals) confirm these equations and give the values C2 fi 0-33 
and C, = 0.27. New experiments with non-buoyant puffs having considerable 
initial momentum also confirm the equations, with the same values for C2 and C,. 
These results support the view that the turbulence inside thermals is primarily 
maintained through their mean motion rather than directly by gravitational 
instability. 

1. Introduction 
A thermal is a strongly turbulent mass of buoyant fluid moving, due only to 

the action of buoyancy forces, through surrounding fluid with which it can mix 
freely. Early experiments with isolated thermals of constant total buoyancy in 
unstratified surroundings (Scorer 1957; Woodward 1959) showed that each 
thermal roughly obeyed the equation 

z = nr, (1) 

where z is the distance travelled by the leading extremity of the turbulent region, 
2r is the greatest horizontal dimension of the turbulent region, and n is a number 
which was constant for any one thermal; the value of n varied considerably from 
thermal to thermal. The mean fluid motion was roughly symmetrical about a 
vertical axis: such cases are therefore called axial thermals. 

Later experiments (Richards 1963) showed that, in circumstances like those of 
Scorer's and Woodward's experiments, cylindrical thermals (i.e. thermals in 
which the mean motion is roughly symmetrical about a vertical plane) obey (1). 
In  cylindrical thermals, 2r is the maximum dimension perpendicular to the 
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vertical plane of mean symmetry. These and other experiments (Richards 1961) 
also showed that, during the motion of any one thermal, 

where p is the density of the surrounding fluid, t is the elapsed time, g is the 
acceleration due to gravity, zCu is a numerical constant for all thermals of the 
one type, and a = 3 or 3 for axial or cylindrical thermals respectively. M3 is the 
constant mass excess of an axial thermal (the difference between the masses of 
fluid contained within and displaced by the thermal) and iK2 is the mass excess 
per unit length of a cylindrical thermal. The experimental results gave zC3 = 0-73, 
and ,C, == 0.7 when the thermal was released almost instantaneously. 

In  other experiments (Turner 1963) increasing values of $I3 were imitated by 
the progressive generation and growth of small gas bubbles within a liquid 
thermal which moved through unstratified surroundings. One is therefore led 
to consider the more general case of a strongly turbulent buoyant or non-buoyant 
element which moves through and mixes with its surroundings. Such an element 
is called a puff. Axial puffs of zero initial buoyancy were studied experimentally 
by Grigg & Stewart (1963); the present work extends and clarifies their results. 

2. Special cases of puff motion 
The general case of puff motion is so complicated, for example by the possible 

stratification of potential density and velocity in the surroundings, that we first 
consider puff motions with the following restrictions: 

(i) any buoyancy force acts only in the direction of motion of the puff as 
a whole; 

(ii) the internal and external densities are approximately equal, but this 
approximation does not apply to the calculation of buoyancy forces; 

(iii) the motion of the surrounding fluid is substantially only associated with 
the motion of the puff itself; 

(iv) the surrounding fluid is unstratified. 
The experiments with thermals then lead us to suppose that the distributions 

of velocity in any single puff may be similar a t  all stages of the motion, so that 
( 1 )  is obeyed by any one puff. The same experiments show that n may vary con- 
siderably from puff to puff, and we must therefore consider what approximate 
similarity may exist between puffs having differing values of n. Consider any 
two isolated puffs which have, at  a certain instant, equal values of r but very 
different values of n. Observations show that each puff maintains a roughly 
spherical or cylindrical shape, and so, at that instant, r is approximately a linear 
measure of the size of either turbulent region. Since the size of the turbulent 
region is a feature of the distribution of velocity, and since the values of x are very 
different at the chosen instant, the length scale of the velocity distribution must 
be independent of z if this distribution is roughly similar in any two puffs. For 
the same reasons, it is appropriate to assume that r is a length scale of the velocity 
distribution. The proper choice of a velocity scale is more difficult; it will be 
assumed that the velocity distribution has a velocity scale dzldt, that is a velocity 
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scale roughly equal to the velocity of advance of the most turbulent fluid. These 
assumptions are apparently supported by the results which follow. 

By symmetry, the impulse of an axial puff is directed along the line of action 
of the buoyancy force. By restriction (ii) above, this impulse is directly propor- 
tional to the product of a characteristic velocity with the density of the fluid and 
the cube of a characteristic linear dimension of the puff. The impulse of any axial 
puff is therefore roughly directly proportional to pr3(dz/dt) .  Similarly, the 
impulse per unit length of a cylindrical puff is roughly directly proportional to 
pr2(dz/dt) .  In  either case, the factor of proportionality should not vary much 
from puff to puff. 

The rate of change of the impulse is equal to the buoyancy force; the 
momentum equations for axial and for cylindrical puffs, under the foregoing 
restrictions, therefore become 

(3) I d{pr3(dz/dt)}/dt = C3M3g 

d{pr2(dz/dt)}/dt = C21c12g 

for axial puffs, 

for cylindrical puffs, 

where C, and C2 are numerical factors which vary little from puff to puff. 
We next consider the results of experiments on thermals and their relation 

to (3). 

3. Thermals of constant buoyancy 
When a thermal moves through unstratified surroundings after release with 

zero initial momentum, and when M3 or M2 is constant, equations (3) give 

pr3(dz/dt)  = C3M3gt,  pr2(dz/dt)  = C2M2gt. ( 4 )  

If we substitute for r in these equations, from ( l ) ,  and again integrate with 
respect to time, we find 

z4 = n32C3M3gt2/p, z3 = n23C211f2gt2/2p. ( 5 )  

Equations (5) explain the occurrence of the terms n3 and n2 in ( 2 ) ;  these terms 
were originally obtained empirically. Comparing ( 2 )  with ( 5 ) ,  we obtain 

2c, = .$:, 3 c 2  = 2,c;. (6) 

The experimental values ,C3 = 0.73, ,C2 fi 0.7 (Richards 1961, 1963) may be 
substituted in (6) to give corresponding values for C2 and C3; these values are 

C3 = 0.27, C2 == 0.33. (7) 

4. Puffs of zero buoyancy; experiments 
In  the case of an axial or a cylindrical puff which is everywhere equal in 

density to its surroundings, we have 31, or M2 = 0. If restrictions (iii) and (iv) 
of $ 2  still apply, (3) may be integrated twice, using ( l ) ,  to give 

z4 = 4C,n31,t/p, z3 = 3n2C212t/p, ( 8 )  

where I ,  is the initial momentum of an axial puff and I, is the initial momentum 
per unit length of a cylindrical puff. 

7-2 
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Such non-buoyant puffs have been produced experimentally in a rectangular 
water tank. Figure 1 (a )  represents the central vertical cross-section of the puff- 
producing apparatus. This ‘puffer ’ extended horizontally between transparent 
parallel vertical walls of the experimental tank when cylindrical puffs were to be 
produced, but the puffer was much shorter when axial puffs were required. The 
puffers were closed on all sides, and the tops too could be closed by stoppers A 
(see figures 1 ( b )  and (c)) .  A plane wire gauze mat was fixed horizontally across 
the inside of each puffer. In  the cylindrical puffer this mat was placed at about 
the level of the free surface of the water in the tank, but in the axial puffer the 
mat was at the orifice. 

Pump Pump 

External 
free surface 

1 
f 

I 

s1 SZ 

Tank wall Dummy wall 

FIGURE 1. The apparatus, or ‘puffers’, which were used to produce dyed non-buoyant 
puffs. (a) Cross-section of puffer. B is a small fixed trough which held dyed water. 
( b )  Schematic side elevation of the puffer which was used to produce cylindrical puffs. 
The cross-section is shown in (a) .  The dummy-walls-large square sheets of thin glass- 
made the mean motion two-dimensional. ( c )  Schematic side elevation of the puffer which 
was used to produce axial puffs. Cross-section shown in (a). 

In  order to produce a puff, the stopper was inserted and the air pressure inside 
the puffer was gradually reduced until the trough B, which held a small volume 
of dyed water, was swamped. The internal air pressure was then increased gradu- 
ally until the water surface inside the puffer reached a convenient level, and 
then the tap C was closed. When dye from the trough had mixed, by slow con- 
vection, throughout the water contained in the puffer, the stopper A was 
suddenly withdrawn. This action released the mass of dyed water, which fell 
quickly out of the puffer under its own weight. Considerable turbulence was 
generated within the mass by its sudden passage through the gauze mat, and 
so a dyed puff was formed near the top of the experimental tank. 
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The shape of the axial puffer may cause surprise. A puffer in the form of a 
vertical cylindrical tube was tried at first, but this design was abandoned when 
preliminary experiments showed that the tube often produced a turbulent vortex 
ring rather than a puff. 

The puff motions were recorded by cine photography; the cine camera also 
recorded the indications of a clock (which registered to 0.01 sec) and of a water 
manometer. Thismanometer, whichwas connected to ‘Man.’ in figure 1 (b )  and (c ) ,  
was used to register the difference between the levels of the free surfaces inside 
and outside the puffer immediately before the removal of the stopper A. 

10 - 
0 10 20 0 10 20 30 

2r (cm) 2r (cm) 

FIGURE 2 .  (a )  The relationship between the distance, z ,  travelled by the cap of a typical 
non-buoyant puff, and the greatest width of the puff, 2r.  The graph represents an axial 
puff, but the corresponding graphs for cylindrical puffs were very like this. ( b )  An unusual 
variation of z with r ,  which was observed only once, in an axial puff. 

Observations from above showed that puffs from the axial puffer only became 
roughly axisymmetric after the distance travelled became roughly equal to the 
length of the longer sides of the puffer orifice. The experimental record of the 
earliest part of each such experiment was therefore ignored. Corresponding 
values of the distance ( z  - zo)  of the front of each puff from the puffer orifice, of 
2r, and of the time ( t  - to) from an arbitrary origin, were measured by projection 
from the cine film. A graph of ( x  - zo)  against 2r was then plotted for each experi- 
ment, and the slope i n  and intercept zo were found. A typical example of such 
a-graph is shown in figure 2(a) .  In  all but one of the experiments, as in the 
experiment which corresponds to figure 2 (a ) ,  n was roughIy constant throughout 
the observed motion. In  the exceptional case, which was an axial puff, the value 
of n suddenly changed during the course of the experiment-the relevant graph 
of ( z  - zo)  against 2r is reproduced in figure 2 (b) .  This sharp change is all the more 
interesting because no like change has yet been observed in any experiments 
with thermals. The reason for the change is unknown; the fact that the values of 
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n which occurred in the two parts of the exceptional experiment were also the 
greatest and least values which were observed in any axial puff perhaps indicates 
that the stability of the distribution of fluid velocity associated with a puff 
motion is less a t  the higher values of n. 

t--to (sec) t--to (see) 

FIGURE 3. The relationship between distance travelled, z, and time, in typical cases: 
(a)  non-buoyant axial puff; (b )  non-buoyant cylindrical puff. 

The intercept of each graph like figure 2(a )  with the axis 2r = 0 gave the 
corresponding value of zo, and from this was calculated the value of z correspond- 
ing to each value of 2r. In  the case of figure 2 (b ) ,  the two parts of the graph were 
treated separately as if they belonged to separate experiments, and so then two 
values of zo were obtained. In  order to verify (S), a graph of z4 against ( t  - to) was 
plotted for each normal axial puff, and for each part of the exceptional puff, and 
a graph of 23 against ( t  - to) was plotted for each cylindrical puff. Typical cases 
are shown in figure 3. In the exceptional case, the graph of z4 against ( t  - to) was 
sharply divided into an earlier and a later part, and could be correspondingly 
represented by two distinct straight lines. The transition between the two parts 
was apparently simultaneous with the corresponding change in the value of n 
already noted. 

From (8) 

for axial and cylindrical puffs, respectively. Corresponding values of n and 
dz4/dt or dz3ldt could be found from the slopes of the two graphs for each experi- 
ment, and C, and C, are known from the results of 9 3. So that (9) could be tested 
experimentally, i t  was therefore only necessary to estimate 13/p or I,/p for 
each puff. 
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5. Estimates of I, /p and 1 2 / p  
The longer sides of each puffer were made of transparent rigid plastic sheets. 

In  subsidiary experiments, the air pressure inside each puffer was adjusted, as 
before, so as to obtain some convenient difference of level between the internal 
and external water surfaces, and the motions of these surfaces were then photo- 
graphed in an interval of time which included and immediately followed the 
removal of the stopper. The clock was again included in the field of view of the 
cine camera. 

An examination of individual frames of these cine films revealed that the free 
surface of the water inside each puffer remained roughly plane and horizontal 
during its descent. Also, the amplitudes of the waves created on the water surface 
outside the puffer were very much less than any of the initial differences of level 
used in the main experiments. This result was obtained intentionally, by fixing 
the puffer orifice a t  a constant and sufficient depth (about 4 cm) below the initial 
level of the external free surface. After its first descent, the internal free surface 
heaved slightly about the final level, but remained roughly horizontal. The ratio 
of successive maximum displacements above the final level during these small 
oscillations was roughly 0.9. 

Consider a horizontal plane situated at a short distance below the puffer 
orifice. Let dl$/dt be the downward flux of momentum through this plane. Then 

n 

dIg/dt = I pu JuJ d A ,  
J 

where u is the downward vertical component of the fluid velocity, and dA is the 
element of area. It will be assumed that we may approximate to this integral by 
- A  1 VI Vp/A2,  where P is the rate of change of the volume of water within the 
puffer, and A is the area of the puffer orifice. This assumption is equivalent in 
effect to an assumption that the velocity component is uniform across the region 
of area A and zero elsewhere. 

Let s be the distance of the free surface inside the puffer above the line in which 
the internal planes of the sides would meet if produced (figure 1 (a ) ) .  Let so be 
the distance of the puffer mouth above this line, and let s1 and s2 be, respectively, 
the initial and final values of s. Let 1: be the momentum emitted by the puffer. 
Then from the assumption of the preceding paragraph, it follows easily that 

Since the amplitude of the oscillations of the internal free surface was always 
much less than the initial head of water, and since these oscillations were only 
slightly damped, the total efflux of momentum immediately following the first 
coincidence of the internal free surface with its final level was presumably almost 
equal to the subsequent influx until the second coincidence, and so on during the 
successive quarter cycles of oscillation. The small remainder of the momentum 
flux may reasonably be supposed to have been converted to momentum of 
small-scale eddies and of waves on the external free surface. The value of I; 
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corresponding to the motion of the internal free surface from its initial level to 
its first coincidence with its final level is therefore an approximate estimate of 
the total impulse of the puff, that is, of I3 or of 12/1 in the cases of axial and of 
cylindrical puffs respectively, where 1 is the length of the mouth of the puffer 
which was used to produce cylindrical puffs. 

The cine film record of each subsidiary experiment was projected and 
measured frame by frame so as to determine corresponding values oft and s, and 
a graph of s2 against t was plotted for the interval between the removal of the 

(ii) - (d (2 ) } /d t  (cm2 sec-’) x 103 
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(i) time (see) 

FIGURE 4. A subsidiary experiment for estimating the impulse of a non-buoyant puff. 
The area between curve (ii) and the axis of s2 is approximat,ely proportional to the impulse; 
see equation (10). 

stopper and the first coincidence of the free surfaces. The slope of each graph was 
estimated at various points by drawing tangents, and so corresponding graphs of 
-ds2/dt against s2 were constructed. The area under each graph, equal to the 
integral in (lo), was measured with a planimeter. The values of A ,  so, and I were 
measured, and so 13/p or 12/p was estimated. An example of the graphs of s2 

against t and of - ds2/dt against s2 is shown in figure 4. In  each set of subsidiary 
experiments, the value of s2 was fixed at the value which had been used in the 
main experiments, and the range of initial head (sl - s2) included the correspond- 
ing range in the main experiments. Graphs of 13/p and 12/p against (sl - s2) were 
then plotted, and these graphs were used to convert the value of (sl - s2) recorded 
by the water manometer in each main experiment into a corresponding estimate 
of I3lP or I2IP 
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6. Results 
The value of (dz4/dt)/(I , /p) in each experiment on an axial puff was estimated 

as the quotient of the slope of the corresponding graph like figure 3(a) and the 
corresponding estimate of 13/p;  the value of n for each experiment was measured 
from the slope of the corresponding graph like figure 2 ( a ) .  These results are 
shown in figure 5 ( a ) ,  in which the full line represents ( 9 a )  with the value of C, 
given by ( 7 ) .  Similarly, figure 5 ( b )  shows the corresponding values of 
(dz3/dt)/(I , /p) and of n for the cylindrical puffs. Here, the full line represents 
( 9 6 )  with the value of C, given by ( 7 ) .  Thus a useful degree of agreement has 
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FIGURE 5 .  The encircled points are pairs of values from observations on non-buoyant puffs. 
The straight lines represent equations (9) with the values of C ,  and C, found from earlier 
experiments on thermals (Richards 1961, 1963). The lines fit the observations quite well; 
this shows that non-buoyant puffs and thermals have roughly the same values of C ,  
and C,. (a )  Axial case. Arrowed points represent the two parts of the unusual puff of 
figure 2 ( b ) .  ( b )  Cylindrical case. 1, Range of n observed in thermals. 2 ,  Range of 
n observed in puffs. Unfortunately, an experimental mishap prevented the measurement 
of I ,  for the experiments which had the lowest values of n. 

been established between these experiments and the predictions of $4.  When 
n changed suddenly in the course of a particular experiment, the separate parts 
of the experiment separately confirmed the predictions (figure 5 (a)) .  

The mean distribution of fluid velocity inside and outside a cylindrical non- 
buoyant puff was found by the method previously used for cylindrical thermals 
(Richards 1963). If the result, figure 6 ,  is compared with typical corresponding 
results for thermals (Richards 1963) it  is clear that these distributions are very 
alike. The initial turbulence in a thermal is generated by static instability during 
the earliest part of the motion. In  contrast, the initial turbulence in these puff 
experiments was generated by shear in the wake of a wire mesh. However, the 
mean velocity distributions in the final stages of the two motions are alike, and 
we have seen that the experiments give equal values for C, and C,. Static 
instability, which was absent in the puff experiments, therefore seems to be 
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excluded as the main mechanism by which turbulence is maintained in thermals. 
We may presumably conclude that the turbulence of both buoyant and non- 
buoyant puffs is primarily maintained by the mean motion. If there is buoyancy, 
the buoyancy primarily maintains only the mean motion. 

FIGURE 6. The mean fluid motion associated with a non-buoyant cylindrical puff. The 
full lines represent streamlines of a mean normalized stream function $*, which is defined 
from the ordinary stream function $ by $* = @/(z(dz/dt)). The lines are drawn a t  equal 
intervals of $*, and the increment of $* between adjacent lines is 0.02. The line - - - - 
marks part of the boundary of the puff. The puff was moving as though towards the 
bottom of this page, and the value of ?z was 3.4. Arrows indicate the direction of fluid 
motion. The flow outside the puff approximates closely to the potential flow due to a line 
doublet of strength 0434z2(dz/dt) per unit length. The mean fluid motion associated with 
this puff is very like the mean motion associated with cylindrical thermals (Richards 1963). 

The restriction of 3 3 to cases of zero initial momentum is easily removed. For 
example, in unstratified surroundings, if N 3 g  and 31,g are constant, (5) must be 
replaced by 

for axial and cylindrical puffs respectively. In  the earliest part of such motions 
the initial impulse is dominant, and (11) approximate to (8). Later, when the 
impulse due to buoyancy becomes dominant, (11) approximate to (4). 

z4 = 2C3n3(M3gt + SI,) tip, z3 = 3C,n2(M,gt + 21,) t/2pp, (11) 

I wish to thank Mr J. Rippon, who helped to construct and operate the 
apparatus. 
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